Longest Induced Cycles in Circulant Graphs
نویسنده
چکیده
In this paper we study the length of the longest induced cycle in the unit circulant graph Xn = Cay(Zn; Z∗n), where Z∗n is the group of units in Zn. Using residues modulo the primes dividing n, we introduce a representation of the vertices that reduces the problem to a purely combinatorial question of comparing strings of symbols. This representation allows us to prove that the multiplicity of each prime dividing n, and even the value of each prime (if sufficiently large) has no effect on the length of the longest induced cycle in Xn. We also see that if n has r distinct prime divisors, Xn always contains an induced cycle of length 2r +2, improving the r ln r lower bound of Berrezbeitia and Giudici. Moreover, we extend our results for Xn to conjunctions of complete ki-partite graphs, where ki need not be finite, and also to unit circulant graphs on any quotient of a Dedekind domain.
منابع مشابه
Cycles in 3-anti-circulant digraphs
A digraph D is a 3-anti-circulant digraph, if for any four distinct vertices x1, x2, x3, x4 ∈ V (D), x1 → x2 ← x3 → x4 implies x4 → x1. In this paper, we characterize the structure of 3-anti-circulant digraphs containing a cycle factor and show that the structure is very close to semicomplete and semicomplete bipartite digraphs. Laborde et al. conjectured that every digraph has an independent s...
متن کاملCounting Spanning Trees and Other Structures in Non-constant-jump Circulant Graphs
Circulant graphs are an extremely well-studied subclass of regular graphs, partially because they model many practical computer network topologies. It has long been known that the number of spanning trees in n-node circulant graphs with constant jumps satisfies a recurrence relation in n. For the non-constant-jump case, i.e., where some jump sizes can be functions of the graph size, only a few ...
متن کاملRecognizing Bipartite Incident-Graphs of Circulant Digraphs
Knödel graphs and Fibonacci graphs are two classes of bipartite incident-graph of circulant digraphs. Both graphs have been extensively studied for the purpose of fast communications in networks, and they have deserved a lot of attention in this context. In this paper, we show that there exists an O(n log n)-time algorithm to recognize Knödel graphs, and that the same technique applies to Fibon...
متن کاملPowers of cycles, powers of paths, and distance graphs
In 1988, Golumbic and Hammer characterized powers of cycles, relating them to circular-arc graphs. We extend their results and propose several further structural characterizations for both powers of cycles and powers of paths. The characterizations lead to linear-time recognition algorithms of these classes of graphs. Furthermore, as a generalization of powers of cycles, powers of paths, and ev...
متن کاملUnhooking Circulant Graphs: A Combinatorial Method for Counting Spanning Trees and Other Parameters
It has long been known that the number of spanning trees in circulant graphs with fixed jumps and n nodes satisfies a recurrence relation in n. The proof of this fact was algebraic (relating the products of eigenvalues of the graphs’ adjacency matrices) and not combinatorial. In this paper we derive a straightforward combinatorial proof of this fact. Instead of trying to decompose a large circu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 12 شماره
صفحات -
تاریخ انتشار 2005